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Abstract

This paper presents a model of orthotropic damage of materials that combines macroscopic mechanical properties
with microstructure parameters of the material. This model proposes nine elastic constants as the damage variables

to describe the quantity and orientation of the damage. Based on Eshelby's equivalent principle, a simpli®ed
approach to obtaining the overall moduli for a multiphase, anisotropic composite is developed. The overall elastic
compliance tensor of an orthotropic composite reinforced with three mutually perpendicular families of ellipsoidal

inclusions is then derived. As special cases, explicit expressions of the overall elastic compliance tensor of a damaged
material with three mutually perpendicular families of penny voids, needle voids or cracks, respectively, are
presented. The relation of stress and strain with microstructure parameters is given. Moreover, the e�ect of

microstructure parameters on damage of materials is analyzed. # 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Since Kachanov (1958) proposed the concept of damage mechanics, various damage mechanics
models have been developed. Main methods used in the study can be put into two categories, i.e.
continuum damage mechanics and meso-structural damage mechanics.

In continuum damage mechanics, the damage variables are de®ned as the e�ective surface density of
microcracks in a Representative Volume Element (RVE). This, in association with the e�ective stress
concept and the principle of equivalence, has given rise to methods of damage measurement based on
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changes in elastic or plastic properties (see, e.g. Lemaitre, 1996). These concepts have been generalized
to the three-dimensional case by means of the state potential and the potential of dissipation.
Accordingly, state coupling occurs between elastic strain and damage, and kinetic coupling takes place
between plastic strain and damage, which allow one to calculate strains and damage up to failure if the
constitutive equations for the damage are known. For example, Schapery (1990) used strain energy-like
potentials to model the mechanical behavior of linear and nonlinear elastic metrics with growing
damage. Theory and experiments have shown that in particulate and ®brous composite materials, the
e�ect of strain history is often quite limited, at least for limited deformation. Zheng and Betten (1996)
proposed a general description of the theory. Based on this theory, Gao et al. (1996) gave a double-
scalar formula of isotropic elastic damage. However, since the irreversible thermodynamical theory gives
only a thermodynamically admissible framework of the constitutive and evolution equations, the
identi®cation of the fundamental aspects of these equations should have recourse to a series of
experiments. Moreover, since the constitutive equations in the traditional continuum damage theories
(Kachanov, 1958; Lemaitre, 1996; Chaboche, 1984) are based on strain (or, complementary energy or
stress) hypothesis, these theories have some limitations. That is, the Poisson's ratio is constant and the
elongation modulus and shear modulus obey the same rule in damage evolution of materials (Gao et al.,
1996). Obviously, these restrictions describe only some special cases in the damage evolution of
materials.

When a material is subjected to an arbitrary load, the damage is generally anisotropic even if the
undamaged material is macroscopically isotropic. For instance, an isotropic material will produce
orthotropic damage when subjected to a uniaxial load due to the preferential orientation of micro
defects. The mechanical behavior of anisotropic solids requires a suitable mathematical modeling.
Tensor functions constitute a rational basis for a consistent mathematical modeling of complex material
behaviors. A few models of anisotropic damage of materials have been proposed, which directly extend
the concept of the e�ective stress and the damage variables to a three-dimensional stress state and
describe the damage of materials by damage tensors (see, e.g. Chaboche, 1984; Sidoro�, 1981). Certain
principles, methods, and applications of tensor functions on continuum damage mechanics for creep
rupture was presented by Betten (1992). He also discussed the rules for specifying irreducible sets of
tensor invariants and tensor generators for material tensors of rank two and four. Hayakawa and
Murakami (1997) used Gibbs thermodynamic potential to describe the experimental damage surface.
The change in elastic moduli due to damage development and the initial and subsequent damage
surfaces expressed in the stress space are described well by the proposed theory. The existence of a
damage potential and the corresponding normality law were veri®ed experimentally. However, the
restrictions mentioned above still remain.

In the case of meso-structural damage mechanics, attempts have been made to predict the
macroscopic mechanical response of heterogeneous materials based on micromechanical models of the
material damage. Micromechanical models have the distinct advantage of being able to capture
structural details at the microscale and mesoscale, and to allow the formulation of the kinetic equations
for damage evolution based on actual physical processes involved. These models, however, can be
computationally ine�cient in many practical applications, and can only be applied to limited classes of
materials and damage mechanisms.

Both continuum damage mechanics and meso-structural damage mechanics have some advantages
and disadvantages. A combination of the two approaches is an optimum way to ®nd the damage
mechanism of materials related to their microstructure and, at the same time, to the application in
engineering practices. However, owing to a limitation of the two approaches, it has not come true. One
of the main reasons is that the description of material damage, which is the start point for investigating
damage of materials has not been well documented.

In this paper, the relation between the macroscopic properties and microstructure parameters of
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materials is investigated. We focus on the orthotropic damage in materials. Such a situation occurs
frequently in engineering practices. For example, in a ®ber-reinforced composite material, the
development of damage depends on the initial mesoscopic structure of the material. Microcracks are
mainly oriented parallel or perpendicular to the ®ber directions and the initial symmetries are usually
preserved. In such cases, it is su�cient to consider damage in three principal directions. In an initially
macroscopically isotropic material with random distribution of microstructures, orthotropic damage
occurs when it is subjected to a unidirectional load. In the case where orthotropic damage is dominant,
the results can be regarded as the constitutive equation for an elastic metrics with damage, or for
inelastic materials when the degradation of elastic moduli physically depends on damage. However, the
evolution equation is not dealt with here.

The essential task for constructing the model is to determine the overall elastic moduli of a damaged
material. Here we treat voids and cracks in the damaged material as special inclusions whose elastic
moduli is zero. Based on Eshelby's equivalent principle (Eshelby, 1957), we ®rst derive the e�ective
moduli of a multiphase, anisotropic composite. The overall elastic compliance tensor of an orthotropic
composite reinforced with three mutually perpendicular families of ellipsoidal inclusions is then derived.
As special cases, explicit expressions of the overall elastic compliance tensor of a damaged material with
three mutually perpendicular families of penny voids, needle voids or cracks, respectively, are presented.
The relation of stress and strain with microstructure parameters is given. This information is important
in the optimization of composites. Finally, the e�ect of microstructure parameters to damage of
materials is analyzed. In comparison with the method used by Weng (1984), which is based on Mori±
Tanaka's concept of ``average stress'' in the matrix and Eshelby's equivalent principle (Mori and
Tanaka, 1973), the proposed formulae and the process of deduction are much simpler.

For brevity, symbolic notations will be used in the general theory. Bold face Greek letters denote the
second rank tensors, and bold face capital English letters denote the fourth rank ones.

2. The model of orthotropic damage of materials

As long as material damage is considered, it is important to de®ne proper damage variables. Here the
damage variables are de®ned as the relative change of elastic moduli, i.e.

D11 � 1ÿ
~E1

E0
, D22 � 1ÿ

~E2

E0
, D33 � 1ÿ

~E3

E0
,

D12 � 1ÿ ~n12
n0

, D31 � 1ÿ ~n31
n0

, D23 � 1ÿ ~n23
n0

,

D44 � 1ÿ
~G23

G0
, D55 � 1ÿ

~G13

G0
, D66 � 1ÿ

~G12

G0
: �1�

where E0, n0, G0 are Young's modulus, Poisson's ratio and shear modulus of the undamaged material,
respectively. ~E1, ~E2, ~E3, ~n12, ~n23, ~n31, ~G21, ~G23, ~G31 are the corresponding orthotropic elastic parameters of
the damaged material. The advantage of such choice is that these damage variables have macro-
mechanical meaning and they can be easily measured. Here the loss of the sti�ness physically depends
on the damage, i.e. the deterioration of the material. The damage variables for undamaged materials are
zero. The Young's modulus and shear modulus always decrease with the increase of the density of
defects in the damaged material. Some experiments (Murakami et al., 1998; Dong et al., 1997) have
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shown that the Poisson's ratio also decreases with the density of defects in a damaged material. In fact,
the change of Poisson's ratio with the density of defects in damaged materials depends on the shape of
the defects. The critical value of damage variables should be determined experimentally.

The orthotropic damage compliance matrix of the material is

�C � �

266666664

1= ~E1 ÿ~n21= ~E2 ÿ~n31= ~E3 0 0 0
ÿ~n12= ~E1 1= ~E2 ÿ~n23= ~E3 0 0 0
ÿ~n13= ~E1 ÿ~n23= ~E2 1= ~E3 0 0 0
0 0 0 1= ~G23 0 0
0 0 0 0 1= ~G31 0
0 0 0 0 0 1= ~G12

377777775
�2�

where

nij
Ei
� nji

Ej
; �i 6� j; i, j � 1, 2, 3� �i, j is not summed � �3�

The constitutive equation of the damaged material can be expressed by C, or its inverse L. We have

sij � Lijklekl �4�
or

eij � Cijklskl �5�
The nine damage variables account for the quantity and orientation of the damage. In order to connect
the continuum damage mechanics with meso-structural damage mechanics, it is necessary to establish
the relationship between the damage variables and the microstructure parameters. Once such
relationship is available, the constitutive equation of the damaged material with mesostructural
parameters is obtained without any hypothesis of e�ective stresses.

3. Elastic moduli of a multiphase composite

Consider a composite consisting of a matrix and embedded, arbitrarily oriented inclusions in spheroid
shape with di�erent moduli. The distribution of the inclusions is assumed homogeneous and well
separated. The composite is assumed to have n phases of inclusion in addition to the matrix, where a
``phase'' is de®ned as a set of inclusions whose shape (or aspect ratio), orientation and elastic moduli are
identical. Inclusions of the same material but with di�erent orientation or aspect ratio are therefore
classi®ed as another phase. We denote the matrix as the 0th phase with an elastic moduli tensor of L0

and its volume fraction is c0. The elastic moduli tensor of the rth phase is Lr with the volume fraction
cr, where cr � Vr=V andXn

r�0
cr � 1 �6�

The traction at in®nity is prescribed and corresponds to a uniform stress Åsss. Thus the average strains Åeee
produced in the composite is given by

Åeee � C Åsss or Åsss � LÅeee �7�
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where C, with its inverse L, is the overall compliance tensor of the composite. Both the elastic moduli
tensor and the compliance tensor are positive de®nite, and assumed to possess a diagonal symmetry.

Note that

Åeee � 1

V

�
V

eee dV � c0 Åeee�0� �
Xn
r�1

cr Åeee�r� �8�

where Åeee�0� is the volume average strain of the matrix and Åeee�r� is that of the rth inclusion. Similarly, we
have

Åsss � c0 Åsss�0� �
Xn
i�1

cr Åsss�r� �9�

where Åsss�0� is the volume average stress of the matrix and Åsss�r� is that of the rth inclusion and

Åsss�0� � L0 Åeee�0� �10�
Based on Eshelby's equivalent principle (Eshelby, 1957), Åsss�r� may also be expressed in terms of Lr or L0.
That is,

Åsss�r� � Lr Åeee�r� � Lr

�
Åeee�0� � eeer

�
� L0

�
Åeee�0� � eeer ÿ eee�r

�
�11�

where eeer is the perturbed strain with respect to the volume average strain of the matrix, eee�r is Eshelby's
equivalent transformation strain or eignstrain. In terms of Eshelby's tensors, we have

eeer � Sreee�r �12�
where Sr is Eshelby's tensor of the rth inclusion. The fourth rank S tensor possesses the symmetry that

Sijkl � Sjikl � Sijlk �13�
When the matrix is isotropic, Eshelby's tensor is related to the shape and ratio of the inclusions if the
matrix completely contacts with the inclusions. The components of S for a spheroid under the local
coordinates coinciding with its principal axes are given by Eshelby (1957).

Substituting Eq. (12) into Eq. (11), we get

eee�r � ��Lr ÿ L0�Sr�ÿ1�L0 ÿ Lr�Åeee�0� �14�
Thus we have

Åeee�r� � Åeee�0� � eeer � Åeee�0� � Sreee�r � Ar Åeee�0� �15�
where

Ar � I � Sr��Lr ÿ L0�Sr � L0�ÿ1�L0 ÿ Lr� �16�
and I is the fourth rank identity tensor.

Substituting Eq. (15) into Eqs. (8) and (9), we get

Åeee �
Xn
r�0

crAr Åeee�0� �17�
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Åsss �
Xn
r�0

crLrAr Åeee�0� �18�

where

A0 � I �19�
Therefore, the overall elastic moduli tensor for the composite, according to Eq. (7), is

L �
"Xn

r�0
crLrAr

#"Xn
r�0

crAr

#ÿ1
�20�

While the overall compliance tensor is

C �
"Xn

r�0
crLrAr

#ÿ1"Xn
r�0

crAr

#
�21�

Specially, when the elastic moduli in Eq. (21) are set to zero �Lr � 0, r � 1, . . . ,n�, we obtain the
elastic moduli for a damaged material containing ellipsoidal voids, in which

Ar � I � Sr�I ÿ Sr�ÿ1 �22�
In comparison with Weng's formula (Weng, 1984), the proposed formulae and the process of

deduction are simpler. Firstly, we did not introduce a homogeneous material for comparison. Therefore,
the average perturbed stress and strain in the matrix due to the presence of all inclusions need not be
analyzed. Secondly, there is no need to solve the longitudinal eignstrain eee�r . This is usually a di�cult
task. For instance, when the number of inclusion phases in the composite is three, in order to obtain
components of eee�r , namely, e�r�

�

11 , e�r�
�

22 , e�r�
�

33 , r � 1, 2, 3, a set of nine equations must be solved. The more
the number of phases the composite has, the more the number of equations must be solved.

4. Overall elastic moduli for composites containing three mutual orthotropic inclusions

4.1. Calculation model

The calculation model is shown in Fig. 1. Consider a composite containing three mutual
perpendicularly aligned inclusions that are spheroid in shape, with the volume fraction of c1, c2, c3,
respectively. Assume the half axes of the spheroid of the rth set of inclusions, a

�r�
i (i � 1, 2, 3), are along

the direction of axes 1, 2 and 3, respectively. For the ®rst set of inclusions with a volume fraction of c1,
we have a

�1�
1 6� a

�1�
2 � a

�1�
3 and the aspect ratio of the inclusions is de®ned as a1 � a

�1�
1 =a

�1�
3 . Similar

de®nitions hold for the other two phases. Furthermore, when the matrix and inclusions of the composite
are isotropic, we have

L0
ijkl � l0dijdkl � m0�dikdjl � dildjk�

Lr
ijkl � lrdijdkl � mr�dikdjl � dildjk� �23�

where l0, m0 and lr, mr are Lame constants for the matrix and the rth set of inclusions, respectively, and
dij is the Kroneker delta.
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The software MATHEMATICA 3.0 is used to ®nd the explicit expressions of the overall elastic moduli for
the composite containing three sets of mutual orthotropic inclusions. To make use of the known results
of Eshelby's S tensor under the local coordinates, conversion is made between the global coordinate
system and the local coordinate system. Denote S

�r�
ijkl as the Eshelby's tensor for the rth set of inclusions

under the global coordinate system, we have

S
�1�
ijkl � Sijkl

S
�2�
1111 � S2222, S

�2�
2222 � S1111, S

�2�
3333 � S3333 � � �

S
�3�
1111 � S3333, S

�3�
2222 � S2222, S

�3�
3333 � S1111 � � � �24�

Substituting Eqs. (23) and (24) into Eq. (21), making use of Eq. (2), we have obtained elastic constants
for several cases, which are given below.

4.2. Results

Expressions of the elastic moduli are summarized here according to the aspect ratio a of the
inclusions. We denote the elastic constants of the rth set of inclusions as Er, Gr and nr and those of the
matrix as E0, G0 and n0.

4.2.1. Composite reinforced with monotonically aligned special inclusions �c1 6� 0, c2 � c3 � 0�
With the inclusions aligned along the 1-direction, there are ®ve independent elastic constants

associated with the transversely isotropic composite. They are the longitudinal Young's modulus ~E1, the
transverse Young's modulus ~E2, the in-plane shear modulus ~G12, the Poisson's ratio ~n12, the out-of-plane
shear modulus ~G23.

Fig. 1. Calculation model.
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4.2.1.1. Composite reinforced with thin discs �a40, c1 6� 0, c2�c3�0�.
~E1 � E0E1

�
c1E1�1ÿ n0� � c0E0�1ÿ n1�

�
=n

E0E1�1ÿ n1� � c21
�
E0�1� n1 � ÿ E1�1� n0�

��
E1�1ÿ 2n0� ÿ E0�1ÿ 2n1 �

�
� c1

h
E 2

1

ÿ
1ÿ n0 ÿ 2n2

0

�ÿ 2E0E1�1ÿ n1 ÿ 2n0n1 � � E 2
0

ÿ
1ÿ n1 ÿ 2n2

1

�io

~E2 � �c1E1�1� n0� � c0E0�1� n1���c1E1�1ÿ n0� � E0�c0 � c1n1 ÿ n1��
c1E1�1ÿ n20� � c0E0�1ÿ n21�

~G23 � 1

2

�
c0E0

1� n0
� c1E1

1� n1

�

~G13 � E0E1

2fE1 � E1n0 � c1�E0�1� n1� ÿ E1�1� n0��g

~n23 � c1E1n1�1ÿ n20� � c0E0n0�1ÿ n21�
c1E1�1ÿ n20� � c0E0�1ÿ n21�

�25�

4.2.1.2. Composite reinforced with circular cylinders �a41, c1 6� 0, c2�c3�0�

~E1 � c1E
2
1�1� n0 � c1�1ÿ n0 ÿ 2n20�� � c20E

2
0�1ÿ n1 ÿ 2n21� � c0E0E1�1� n0 � c1�2ÿ n0 ÿ n1 ÿ 4n0n1��

E1�1� n0 � c1�1ÿ n0 ÿ 2n20�� � c0E0�1ÿ n1 ÿ 2n21�

~E2 � fE0�E1�3� c1 ÿ 4n0��1� n0� � c0E0�1� n1���c1E 2
1�1� n0��1� c1�1ÿ 2n0�� � c20E

2
0�1ÿ n1 ÿ 2n21�

ÿ c0E0E1�1� n0 � c1�2ÿ n0 ÿ n1 ÿ 4n0n1���g
�fc0c1E 3

1�1ÿ n0��1� n0�3�3� 2c1 ÿ 4�1� c1�n0�

� c20E
3
0�1� 2c1�1ÿ n20���1� n1�2�1ÿ 2n1� � c0E

2
0E1�1� n0��1� n1��4ÿ 6n1 ÿ 4n0�1ÿ 2n1�

� 6c21�1ÿ n0��1ÿ n1 ÿ 2n0n1� � c1�1� n1 ÿ n0�1ÿ n1 � 4n0n1��� � E0E
2
1�1� n0�2�3ÿ 4n0 � 6c31�1

ÿ n0��1ÿ n0 ÿ 2n0n1� ÿ 2c1�n1 � n0�2ÿ 3n1 ÿ n0�3ÿ 2n1��� ÿ c21�1ÿ 2n1 ÿ 2n0�2� 3n1 ÿ 2n0�1

� 2n1����g
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~G23 � E0�E1�3� c1 ÿ 4n0��1� n0� � c0E0�1� n1��
2�1� n0�fc0E1�3ÿ n0 ÿ 4n20� � E0�1� n1��1� c1�3ÿ 4n0��g

~G13 � E0��1� c1�E1�1� n0� � c0E0�1� n1��
2�1� n0��c0E1�1� n0� � �1� c1�E0�1� n1��

~n13 � E1�1� n0��c0n0 � 2c1n1�1ÿ n0�� � c0E0n0�1ÿ n1 ÿ 2n21�
E1�1� n0��1� c1�1ÿ 2n0�� � c0E0�1� n1��1ÿ 2n1� �26�

4.2.2. Composite reinforced with perpendicularly aligned thin discs �a40, c1 6� 0, c2 6� 0, c3�0�.
With the inclusions c1 and c2 aligned along the 1-direction and the 2-direction, respectively, there are

nine independent elastic constants associated with the orthotropic composite. However, due to the
symmetry of axes 1 and 2 in geometry, ~E2, ~n23, ~G23 can be obtained easily by exchanging elastic
constants and volume fraction of inclusions in the direction of axes 1 and 2 in the expressions for ~E1,
~n13, ~G13, respectively. Here only the Young's moduli ~E1, ~E3, the shear moduli ~G12, ~G13 and the Poisson's
ratios ~n12, ~n13 are given.

~E1 � E1fc1c2E1E2�c1E1 � c2E2��1� n0�2�1ÿ 2n0� � c0E
3
0�1� n1��1� n2���1ÿ c2��1ÿ n1��1ÿ n2�

ÿ c1��1ÿ n1��1ÿ n2� ÿ c2�1ÿ n1 ÿ n2��� � E 2
0f2c2�1ÿ c2�E2�1ÿ n21��1ÿ n0n2� � c21�c2E2�1� n1�

� �1ÿ n1�1� 2n0 ÿ n2� ÿ n0n2� ÿ E1�1� n2��2�1ÿ n0n1��1ÿ n2� ÿ c2�2ÿ 2n0n1 ÿ n2�2� n0

� n1���� � c1��1ÿ c2�E1�1� n2��2�1ÿ n0n1��1ÿ n2� ÿ c2�1ÿ n0n1 ÿ n2�1� 2n0 ÿ n1��� ÿ c2E2�1

� n1��3ÿ 3n0n2 ÿ n1�3� 2n0�1ÿ n2� ÿ n2� ÿ c2�2ÿ 2n0n2 ÿ n1�2� n0 � n2����g � E0�1� n0�

� fc22E 2
2�1ÿ n0��1ÿ n21� � c21E1�E1�1� n2���1ÿ n0��1ÿ n2� ÿ c2�1ÿ n0 ÿ n2�� ÿ c2E2�2� n1n2

ÿ n0�2� 4n1 � n2��� ÿ c1c2E2�c2E2�1� n1��1ÿ n0 ÿ n1� ÿ E1�3ÿ n0�3� 2n1 � 2n2�1ÿ n1�� ÿ c2�2

� n1n2 ÿ n0�2� n1 � 4n2����gg
�fc31�E0 ÿ E1�1ÿ 2n0� ÿ 2E0n1��E1�1� n0�ÿE0�1� n1��2�1ÿ n22�

ÿ E0E1�1ÿ n21��c2E2�1ÿ n20� � �1ÿ c2�E0�1ÿ n22�� � c21�E1�1� n0� ÿ E0�1� n1��fE 2
0�2ÿ c2��1

ÿ n22��1ÿ n1 ÿ 2n21� ÿ E1�1ÿ n0 ÿ 2n20��c2E2�1ÿ n1n2� ÿ E1�1ÿ n22�� � E0�c1E2�1� n1��1ÿ 2n1��1

ÿ n0n2� � E1�1� n2��ÿ�3ÿ n1 ÿ n0�2� 6n1���1ÿ n2� � c2�1ÿ n0�1� 2n1�1ÿ n2�� ÿ n2�1ÿ n1���g

� c1fc2E 2
1E2�1� n0�2�1ÿ 2n0� � �1ÿ c2�E 3

0�1� n1�2�1ÿ 2n1��1ÿ n22� ÿ E0E1�1� n0��E1�1� n2�

� �ÿ2�1ÿ n0�1� n1���1ÿ n2� � c2�1ÿ n0�1� n1� ÿ n2�1ÿ n1��� � c2E2�1� n1��2ÿ n1�2� n2�

ÿ 2n0�1ÿ n1n2��� ÿ E 2
0�1� n1��ÿ2c2E2�1� n1��1ÿ 2n1��1ÿ n0n2� � E1��3ÿ n1�3� 4n0���1ÿ n22�

ÿ c2�1� n2��2ÿ 2n2 ÿ n1�2� 3n0 ÿ 2n2�1� n0�����gg
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~E3 � fE0�1ÿ n21��E0 ÿ c2�E0 ÿ E2 � E2n0� ÿ �1ÿ c2�E0n2��E0�1� n2� ÿ c2�E0 ÿ E2 ÿ E2n0 � E0n2��

� c21�E0 ÿ E1 ÿ E1n0 � E0n1��E0�E0 ÿ E1 � E1n0 ÿ E0n1��1ÿ n22� � c2��E0 ÿ E2��E1 ÿ E0� � �E0

ÿ E2 ÿ 2E2n0��E0n1 ÿ E1n0� � E0n2�n1�E0 � E2� ÿ n0�E1 � E2�� � E0n22�E0 ÿ E1��� � c1f2E 2
0�E1

ÿ E0 ÿ E1n0n1 � E0n21��1ÿ n22� � c22�E0 ÿ E2 ÿ E2n0 � E0n2��2E1E2n20 � �E0 ÿ E2��E1 ÿ E0

� E0n21� � E0n2�E0 ÿ E1 � n1�E1 � E0�� ÿ n0�E2�E0 ÿ E1� � E0�n1�E1 � E2� � 2n2E1���

ÿ c2E0�E1E2n20�3� 2n1�1ÿ n2� � 2n2� � E0n1n2�E0 � E1 � E2 � n2�E1 � E0�� � 3�E0 ÿ E1��E2

ÿ E0 � E0n22� ÿ E0n21�3E2 ÿ 3E0 ÿ n2�E0 � E2� � 2E0n22� ÿ n0�2E0E2n21�1ÿ n2� � n2�2E0E1

� E2�3E0 ÿ 2E1� � 2E0E1n2� � n1�3E0E1 � 2E2�E0 ÿ E1� � n2�2E1E2 � E0�E1 � E2�

ÿ 2E0E1n2����gg
�fE0�1ÿ n21��E0 ÿ c2�E0 ÿ E2 � E2n20� ÿ �1ÿ c2�E0n22� ÿ c1�E0�E0ÿE1 � E1n20

ÿ E0n21��1ÿ n22� � c2�2E1E2n30 � E 2
0n1n2�1� n2� � E0n21�E0 ÿ E2 � E0n2� � �E0 ÿ E1��E2 ÿ E0

� E0n22� ÿ E0n0�E2n1�1� n1� � E1n2�1� n2�� ÿ n20�E0E1 � E2�E0 ÿ 3E1� � E0�E2n1 � E1n2����g

~G12 � E0E1E2

2fE2�E1�1� n0� � c1�E0�1� n1� ÿ E1�1� n0��� ÿ c2E1�E2�1� n0� ÿ E0�1� n2��g

~G13 � E1�c2E2�1� n0� � �1ÿ c2�E0�1� n2��
2fE1�1� n0� � c1�E0�1� n1� ÿ E1�1� n0��g�1� n2�

~n13 � ÿc31 ~E1

~n12 � ÿc21 ~E2 �27�

where
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c31 �fÿc1c2E1E2n2�1ÿ n0�2�1ÿ 2n0� ÿ E0�1� n0��c1E1�c1n1 � n0�1ÿ c1 ÿ c2 ÿ n1��
� c2n2�c1E1n0 � E2�1� n1���1ÿ n0��1ÿ n21� ÿ c1�1ÿ n0 ÿ n1���
ÿ c1E1n22�c1n1 � n0�1ÿ c1 ÿ 2c2 ÿ n1��� ÿ E 2

0�1� n1��1� n2��n0�1ÿ c1 ÿ c2��1ÿ c1 ÿ n1��1ÿ n2�

� c1n1�1ÿ c1 ÿ n2 � c1n2 ÿ c2n2��g
�fc1c2E1E2�c1E1 � c2E2��1� n0�2�1ÿ 2n0�

� �1ÿ c1 ÿ c2�E 3
0�1� n1��1� n2���1ÿ c1 ÿ n2��1ÿ c2��1ÿ n1� � c1n2�1ÿ c2 ÿ n1��

� E0�1� n0�fc22E 2
2�1ÿ n0��1ÿ n21� � c21E1�E1��1ÿ n0��1ÿ n22� ÿ c2�1� n2��1ÿ n0 ÿ n2��

ÿ c2E2�2� n1n2 ÿ n0�2� 4n1 � n2��� ÿ c1c2E2�c2E2�1� n1��1ÿ n0 ÿ n1�
ÿ E1�3ÿ n0�3� 2n1 � 2n2�1ÿ n1�� ÿ c2�2ÿ 2n0 ÿ n0n1 ÿ 4n0n2 � n1n2���g
� E 2

0f2c2�1ÿ c2�E2�1ÿ n21��1ÿ n0n2� � c21�c2E2�1� n1��1ÿ n1 ÿ 2n0n1 ÿ n0n2 � n1n2�
ÿ E1�1� n2��2�1ÿ c2��1ÿ n0n1� ÿ n2�2� 2n0n1 � c2�2� n0 � n1����
� c1�E1�1ÿ c2��1� n2��2�1ÿ n2��1ÿ n0n1� ÿ c2�1ÿ n2 ÿ n0n1 ÿ 2n0n2 � n1n2��
ÿ c2E2�1� n1��3ÿ 3n1 ÿ 2n0n1 ÿ n2�3n0 ÿ n1 ÿ 2n0n1� ÿ c2�2ÿ n1�2� n0� ÿ n2�2n0 � n1����gg

c21 �fE0E2�1ÿ n21��c2E2�1� n0� � �1ÿ c2�E0�1� n2���c2n2 � n0�1ÿ c2 ÿ n2��

ÿ c21�E1�1� n0� ÿ E0�1� n1���1� n2�fE0E2�n0 ÿ n1��1ÿ n2�

ÿ c2�E1E2n2�1ÿ n0 ÿ 2n20� � E 2
0n1�1ÿ n2 ÿ 2n22� � E0�E2�n0 ÿ n1 ÿ n2�1ÿ n1 ÿ 2n0n1��

ÿ E1n0�1ÿ n2 ÿ 2n22���g � c1fE0E2�E1n0�1� n0��1ÿ n1�

ÿ E0�1� n1��n0�2ÿ n1� ÿ n1���1ÿ n22� � c22�1� n1��E2�1� n0�

ÿ E0�1� n2���E1E2n2�1ÿ n0 ÿ 2n20� � E 2
0n1�1ÿ n2 ÿ 2n22�

� E0�E2�n0 ÿ n1 ÿ n2�1ÿ n1 ÿ 2n0n1�� ÿ E1n0�1ÿ n2 ÿ 2n22���

ÿ c2�E1E
2
2n1n2�1� n0�2�1ÿ 2n0� ÿ E 3

0n1�1� n1��1� n2�2�1ÿ 2n2�

� E0E2�1� n0��E1�1� n2��n0 ÿ 2n0n1 ÿ 2n2 � n0n2 � 4n0n1n2�

� E2�1� n1��n0 ÿ n1 ÿ n0n2�1ÿ 2n1��� ÿ E 2
0�1� n1��1� n2��E2�3n0 ÿ 2n1

ÿ 2n0n1 ÿ n2�2� n0 ÿ 3n1 ÿ 4n0n1�� ÿ E1n0�1ÿ n2 ÿ 2n22���gg
�
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fE2fc1c2E1E2�c1E1 � c2E2��1� n0�2�1ÿ 2n0� � �1ÿ c1 ÿ c2�E 3
0�1� n1��1� n2���1ÿ c1

ÿ n2��1ÿ c2��1ÿ n1� � c1n2�1ÿ c2 ÿ n1�� � E0�1� n0��c22E 2
2�1ÿ n0��1ÿ n21� � c21E1�E1��1

ÿ n0��1ÿ n22� ÿ c2�1� n2��1ÿ n0 ÿ n2�� ÿ c2E2�2� n1n2 ÿ n0�2� 4n1 � n2���

ÿ c1c2E2�c2E2�1� n1��1ÿ n0 ÿ n1� ÿ E1�3ÿ n0�3� 2n1 � 2n2�1ÿ n1�� ÿ c2�2ÿ 2n0

ÿ n0n1 ÿ 4n0n2 � n1n2���� � E 2
0�2c2�1ÿ c2�E2�1ÿ n2��1ÿ n0n2� � c21�c2E2�1� n1��1ÿ n2

ÿ 2n0n1 ÿ n0n2 � n1n2� ÿ E1�1� n2��2�1ÿ c2��1ÿ n0n1� ÿ n2�2ÿ 2n0n1 ÿ c2�2� n0

� n1���� � c1��1ÿ c2�E1�1� n2��2�1ÿ n0n1��1ÿ n2� ÿ c2�1ÿ n2 ÿ n0n1 ÿ 2n0n2 � n1n2��

ÿ c2E2�1� n1��3ÿ 3n1 ÿ 2n0n1 ÿ n2�3n0 ÿ n1 ÿ 2n0n1� ÿ c2�2ÿ 2n1 ÿ n0n1 ÿ 2n0n2

ÿ n1n2����gg �28�

4.2.3. Materials containing voids or cracks
4.2.3.1. Damaged material with three mutually perpendicular families of penny voids �a� 1�. In the

special case of penny shaped voids (the aspect ratio 0 < a� 1), Eshelby's S tensor has a simpler form
(Eshelby, 1957). Assuming a1 � a2 � a3 � a and the volume fraction of the voids is small so the high
order terms are negligible, we obtain the following approximate expressions for the nine independent
elastic constants,

~Er

E0
� 4pac0

4pa� cr�1� n0��16ÿ 17pa� 16�paÿ 1�n0� , �r � 1, 2, 3�,

~Gts

G0
� c0

c0 � 4�cr � cs��1ÿ n0�
pa�2ÿ n0� � 16ct�1ÿ n0�

16ÿ 7pa� 8�paÿ 2�
, �r 6� s 6� t; r, s, t � 1, 2, 3�,

~nrs
n0
� 2pa�cr � cs ÿ �cr � cs ÿ 2�n0 ÿ 2�cr � cs�n20�

n0f4pa� cr�1� n0��16ÿ 17pa� 16�paÿ 1�n0�g , �r 6� s; r, s � 1, 2, 3�: �29�

4.2.3.2. Damaged material with three mutually perpendicular families of needle voids �a41�. The nine
independent elastic constants are shown below.

~Er

E0
� c0

1� 2�cs � ct��1ÿ n20�
, �r 6� s 6� t; r, s, t � 1, 2, 3�,

~Gts

G0
� c0

1� cr � cs � ct�3ÿ 4n0� , �r 6� s 6� t; r, s, t � 1, 2, 3�,

~nrs
n0
� n0 � ct�1ÿ n0 ÿ 2n20�

n0�1� 2�cs � ct��1ÿ n20��
, �r 6� s 6� t; r, s, t � 1, 2, 3�: �30�
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4.2.3.3. Damaged materials with three mutually perpendicular families of circular cracks �a40�. As the
aspect ratio of the crack tends to zero, the volume fraction c1, c2 and c3 are no longer adequate to
describe the density of cracks. A measurable one is perhaps the crack-density parameter introduced by
Budiansky and O'Connel (1976), de®ned as

Z � Nd 3

V

where N is the number of cracks in a volume V and d is the crack diameter. Then the volume fraction
for the rth set of cracks can be expressed as

cr � 4pd 2tNr

3V
� 4

paZr
3

, �r � 1, 2, 3� �31�

where t is the thickness of the crack, a � t=d and Z1, Z2, Z3 are the crack densities with their normal par-
allel to axes 1, 2 and 3, respectively.

Setting a40 in Eq. (29), the elastic constants for the damaged material with three mutually
perpendicular families of circular cracks take the forms

~Er

E0
� 1

1� 16

3
�1ÿ n20�Zr

, �r � 1, 2, 3�,

~Gts

G0
� 1

1� 16

3

�1ÿ n0�
�2ÿ n0� �Zr � Zs�

, �r 6� s; r, s � 1, 2, 3�,

Fig. 2. Variation of D11 with void volume for sample 1.
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~nrs
n0
� 1

1� 16

3
�1ÿ n20�Zr

, �r 6� s; r, s � 1, 2, 3�: �32�

From Eq. (32), we get

~n12
~E1

� ~n23
~E2

� ~n31
~E3

� n0
E0

�33�

Hence, there are three independent elastic constants for the damaged material containing three mutually
perpendicular families of circular cracks, if the cracks retain their shape during the evolution. This result
comes from the fact that, in the present case, there are only three independent microstructure
parameters, i.e., Z1, Z2, and Z3.

5. The relationship between damage variables and microstructure of the damaged material

The explicit solutions of the damage variables can be obtained by substituting the overall elastic
moduli shown above into Eq. (1), which can be expressed in general as

D � D�a1, a2, a3, c1, c2, c3, n0� �34�
where D is one of the nine damage variables in Eq. (1). The relationship between stress and strain can
then be written in the form of

s � f �fDg, e, E0� �35�
where {D } denotes the assembly of all damage variables. Consequently, the dependence of the damage

Fig. 3. Variation of D11 with void volume for sample 2.
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variables on the microstructural parameters of the material can be analyzed. Due to the limited length
of the paper, we can discuss only some examples here.

5.1. Example 1
Orthotropic damages for three damaged materials having the same isotropic matrix material with

E0 � 2:76 GPa and n0 � 0:35 but containing voids of di�erent aspect ratios. The aspect ratio of voids is

Fig. 5. Variation of overall elastic constants with n0.

Fig. 4. Variation of damage variables with n0.
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a1 � a2 � a3 � 0:1, a1 � a2 � a3 � 0:5, and a1 � a2 � a3 � 100 for materials 1, 2 and 3, respectively.
The variation of D11 with c1 for the three materials when c2 � c3 � 0:1 is shown in Fig. 2. Comparing
the three curves, the in¯uence of the shape of voids on the damage variables is obvious.

5.2. Example 2
Orthotropic damage for three damaged materials having the same isotropic matrix material with E0 �

2:76 GPa and n0 � 0:35 but containing voids with di�erent orientations. The aspect ratio of voids is a1
�25, a2�0:5, a3�0:05 for material 1, a1�0:05, a2�25, a3�0:5, for material 2, and a1�0:5, a2�0:05, a3
� 25 for material 3. Fig. 3 shows the variation of D11 with c1 for the three materials when
c2 � c3 � 0:05. One can see the in¯uence of orientation of voids on the damage variable.

5.3. Example 3
Orthotropic damage for materials having the same Young's modulus of the isotropic matrix material

E0 � 2:76 GPa, and three sets of voids with the same volume fraction, c1 � c2 � c3 � 0:1, the same
aspect ratio, a1 � a2 � a3 � 10. Due to the symmetry of the damaged material, we have, D11 � D22 �
D33, D44 � D55 � D66 and D12 � D13 � D23. To explore the e�ect of Poisson's ratio of the matrix
apparently, the variation of each damage variable and elastic constant of damaged materials with n0 are
shown in Figs. 4 and 5, respectively. It is observed that D12, D13, D23 are sensitive to the variation of n0,
while D11 � D22 � D33 and D44 � D55 � D66 remain relatively insensitive.

6. Conclusions

Based on the proposed orthotropic damage model, the relationship between the stress tensor and
strain tensor is established which requires no equivalent hypothesis. Consequently, the limitation of
traditional theory is avoided. Explicit solutions of damage compliance with microstructural parameters
for orthotropic damaged material containing three mutually perpendicular families of penny voids,
needle voids and cracks, respectively, are presented. Accordingly, the relationship between stress and
strain with microstructural parameters is established. Analysis shows that the damage variables in the
proposed model always increase with the volume fraction of materials and depend on the shape and
orientation of the defects. The Poisson's ratio has a greater in¯uence on damage variables D12, D13 and
D23 than on the others. Nine damage variables, which are related to the changes of the elastic constants,
are suggested for an orthotropic damaged material. We focused our attention on establishing the
relationship between the overall elastic properties and the micro-structural parameters of the composite.
By means of Eshelby's equivalent principle, a general approach to obtain the elastic moduli of a
multiphase composite is proposed. More speci®cally, the explicit solutions of the overall elastic moduli
for composites reinforced with special ellipsoidal inclusions are given. The method proposed here,
however, could not be applied to non-ellipsoidal inclusions for which Eshelby's equivalent principle is
not valid.
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